CMOS third-method ssb generator

Chris Bartram, G4DGU, notes that the various "filterless" ssb generators that have been described recently in *TT* have shown some ingenious adaptations of standard bipolar-type integrated circuits. But the IC analogue double-balanced modulators mostly require at least two balancing adjustments. And when such techniques are employed on a third-method exciter this leads to a multiplicity of preset pots!

He has found that at low frequencies (ie suitable for the audio side of a third-method exciter) there is, for once, a satisfactory answer in the CD4016 cmos quad bilateral switch devices. In a vhf "third method" ssb generator that he is currently developing, G4DGU obtains 50dB of carrier suppression with no adjustment, and a single preset potentiometer can be adjusted to give a signal leak for both channels of about —50dB!

When using cmos devices for the "clock" (CD4001), the digital phase-shifter (CD4027) and for the modulators (CD4016), the total cost of the devices required in the audio section of the generator is about £3.50. This arrangement is outlined in Fig 1, which also includes the simple active filter used in the at board.
FIG 1. 450U's suggestions for the cross of board of a third

than one per cent.

All transformers in each channel are matched to better

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at

method at generator. All passive components in the active at